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We present a theory of the three-dimensional critical wetting transition based on the surface-order-parameter
interface HamiltonianH2@ l 1,l 2# recently used to study complete wetting. A renormalization group analysis
highlights a scaling-violation anomaly whereby local structure factors at the wall and unbinding interface are
characterized by mean-field and nonuniversal critical exponents, respectively. This reflects the combination of
depinning, decoupling, and unbinding that are not properly distinguished in previous models. Comparisons
with existing simulation studies are very encouraging.@S1063-651X~96!05206-3#

PACS number~s!: 68.10.2m, 68.45.Gd, 64.60.Fr, 82.65.2i

The status of critical wetting theory has been controver-
sial since Binder, Landau, and Kroll~BLK ! @1# reported that
data from extensive Monte Carlo simulations of wetting in
an Ising model are very well fitted by mean-field~MF!
theory@2#, in sharp contrast to predictions of strong nonuni-
versality based on renormalization group analyses of a
capillary-wave model@3#. Numerous authors have forwarded
explanations for this anomaly, including early suggestions
that the critical region is small@4# and later suggestions that
the transition may be very weakly first order@5#. Disappoint-
ingly, these proposals do not make quantitative contact with
the simulation results, which must be considered the goal of
theory. Recently, however, some successes have been scored
in this direction. In particular, it has been shown@6# that the
adsorption data of BLKabovethe wetting temperature~and
in zero bulk field! can be understood using capillary-wave
ideas that take into account the finite-size~FS! geometry
~which is of parallel-plate type with equal surface fields!.
Also, the results of more recent Ising model simulations@7#
of a different FS system@8# ~with competing surface fields!
can be quantitatively explained using a surface-order-
parameter interface HamiltonianH2[ l 1 ,l 2], which takes into
account coupling between fluctuations near the wall and de-
pinning interface@9,10#. These developments not only under-
line the subtlety of the problem at hand, but confirm that the
theoretical expectation for the value of the all important wet-
ting parameterv ~which is about unit@11#! is consistent with
much of the available simulation data. While this is encour-
aging, the original observations of BLK concerning the MF
scaling of the local susceptibilityx1 ~which is seen over sev-
eral decades of the bulk field! seems all the more puzzling
since this is certainly inconsistent with a value ofv of order
unity, provided one accepts the predictions of scaling and
capillary-wave theory.

In this paper we point out that observations of MF-like
criticality and scaling in local observables at the wall can be
fully reconciled with fluctuation-induced nonuniversal be-
havior near the unbinding fluid interface using the coupled
Hamiltonian H2[ l 1 ,l 2] mentioned above, which improves
upon capillary-wave models of wetting. Specifically, we will
show that a structure factor local to the fluctuating fluid in-
terface exhibits the same dramatic nonuniversal criticality~at
leading order! as the original Bre´zin-Halperin-Leibler~BHL!
@3# predictions, but the analogous function at the wall only

exhibits much weaker MF-like singularities. This surprising
feature of the surface-order-parameter interface Hamiltonian
corresponds to a violation of simple scaling theory, in con-
trast to the predictions of the standard capillary-wave model
where scaling is obeyed@12#. This reflects the combined ef-
fects of unbinding, depinning, and decoupling of the collec-
tive coordinates, which are carefully modeled by the
H2[ l 1 ,l 2] Hamiltonian. We believe this goes a long way
towards explaining the controversy surrounding critical wet-
ting theory.

We begin by recalling some details of the critical wetting
transition. At such a transition the adsorption of down-spins
~phaseb, say! at a wall-up-spin~phasea! interface with bulk
field H501 diverges continuously asT→TW

2 at fixed sur-
face fieldH1 or, equivalently, as the~negative! field H1 is
reduced to the critical valueH1c. The thicknessl̄ of the
adsorbed film grows asl̄;t2bs, wheret is the scaling tem-
perature variable, and the transverse correlation lengthj i
;t2n i as the capillary-wave fluctuations develop in the de-
pinning down-spin–up-spin~aub! interface@13#. In nonzero
bulk field the standard scaling ansatz@2# for the singular part
of the free energy is Fsing5t22asW(Ht2D), where
as5222n i12bs is the specific heat exponent and
D5~d11!ni/2 is the gap exponent. At the MF level the ex-
ponents areas50, bs50~ln!, ni51, and D52. However,
renormalization group~RG! predictions ind53 based on a
simple capillary-wave model yield

n i5H 1/~12v!, 0,v, 1
2

~A22Av!2, 1
2,v,2

`, v.2

~1!

wherev5kBTk2/4pSab is the wetting parameter@11#. Here
k is the inverse bulk correlation length of the adsorbedb
phase andSab is the stiffness coefficient of the unbinding
interface. Explicit calculations@12# for the local susceptibil-
ity x1[]m1/]H ~with m1 the wall magnetization! show that
scaling is obeyed~up to unimportant logarithmic factors!
with gap exponentD52ni~v!. Hence along the critical iso-
therm ~t50, H→01! capillary-wave theory predicts thatx1
diverges asx1;H21/2n i at leading order. However, in
marked contrast to this, the measurements of BLK unam-
biguously show thatx1 grows with a critical exponent very
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close to21
2, which is consistent with a MF correlation criti-

cal exponentni'1 and not the predictions of BHL that imply
ni;4 for v;0.8.

To understand this we employ the surface-order-
parameter interface HamiltonianH2[ l 1 ,l 2] previously used
to study coupling effects at the complete wetting transition
~occurring forT.TW andH→01!. The model is defined by
the Hamiltonian@9#

H2@ l 1 ,l 2#5E dy@ 1
2Smn~ l 1 ,l 2!“ lm•“ l n1U~ l 1!

1W~2!~ l 22 l 1!#, ~2!

where the collective co-ordinatel 2 represents the position of
the unbindingaub interface, whilel 1 models order-parameter
fluctuations near the wall~characteristic of the ‘‘noncritical’’
wall-b interface!, which are neglected in traditional
capillary-wave theory. The binding potentials have distinct
roles:W~2! has an expansion very similar to that appearing in
standard capillary-wave models

W~2!~ l !5h̄l2te2k l1be22k l , l.0, ~3!

where h̄}H and b.0, while the potentialU( l 1) simply
binds l 1 to the wall. For zero bulk fieldh̄50 we may write

U~ l 1!5
t2l 1

2

2
, h̄50, ~4!

ignoring prefactors of order unity. This Gaussian approxima-
tion should suffice because~a! the fluctuations ofl 1 are al-
ways much smaller than those ofl 2, and ~b! higher order
terms in the expansion ofU( l 1) vanish quickly ast→0. The
field t vanishes at the MF wetting temperatureTW

MF and may
be identified with the scaling fieldt if fluctuations do not
alter the critical wetting temperature.

The stiffness matrix elementsSmn( l 1 ,l 2) play an essential
role in the theory. First we note that if the correct position
dependence ofS22( l 1 ,l 2) is taken into account, the model
may exhibit a fluctuation induced first-order transition very
similar to the simpler Fisher-Jin interfacial model@5#, which
does not account for the coupling of modes described by
H2[ l 1 ,l 2]. However, the violation of scaling described here
is a feature independent of the order of the transition. For
simplicity we will initially ignore the position dependence of
theSmn and specify the matrix elements by

S11;t2, S1250, S225Sab , h̄50 ~5!

which follows from the corresponding explicit expressions
@9#. We shall return to the implication of the position-
dependent stiffness matrix at the end of our paper. For the
coupled model~2! with parameters defined as in~3!–~5! we
find that the wetting transition is continuous and occurs at
the MF wetting temperatureTW

MF for values ofv,2 similar
to the BHL analysis. However, the present theory highlights
the subtlety of modeling the critical wetting transition. In
addition to the familiar unbinding of thel 2~y! coordinate as
t→0, we note that the lower surface~a! depins, correspond-
ing to the vanishing of the curvature ofU( l 1), and ~b! de-
couples from l 2~y! fluctuations because the cutoff for the

l 1~y! field satisfiesL1!AbS11. Note that for the complete
wetting transition, decoupling does not occur ash̄→0 ~with
t,0 fixed! becauseS11 does not vanish, and the effective
value of the wetting parameter is renormalized@9#. This ef-
fect is negligible at the critical wetting transition and the
wetting parameter~when it appears! takes the BHL form
quoted after Eq.~1!.

Connection with local observables at the wall and inter-
face within the coupled theory is achieved through the cal-
culation of the structure factor matrix elements

Smn~Q![E dy eiQ•y^d lm~0!d l n~y!&, ~6!

whered lm~y![lm~y!2^lm~y!&. At the MF level the three pos-
sible order-parametercorrelation functionsG (zm ,zn ;Q)
~corresponding to the Fourier transforms of the pair correla-
tion function! may be found using the exact identification@9#

G ~zm ,zn ;Q!5m8~zm!m8~zn!Smn~Q!, ~7!

with zm5^ lm&, and the prime denotes differentiation with
respect to argument. The matrix elements may be calculated
using the relation@14#

S21~Q!5S ]11
2

]12
2

]12
2

]22
2 DW~ l 1 ,l 2!1SQ2, ~8!

where ]mn
2 []2/] lm] l n , W( l 1 ,l 2)5U( l 1)1W(2)( l 22 l 1) is

the total binding potential, andS is the stiffness matrix. Here
the second derivatives must be evaluated at the minimum of
W( l 1 ,l 2). For example, when both particles are at the wall
(z15z250) the model recovers the known non-Lorentzian
form of the correlation function@15#

G wa~0,0;Q!5
1

A1BQ22C~Qj i!1O~Q4!
, ~9!

which shows crossover to the noncritical (wb) interface
functionG wb(0,0;Q)5[A1BQ21O(Q4)]21 ast→0. Here
C is the LorentzianC(x)5C/(11x2) while A, B andC are
finite whent50 and may be considered constants. Note that
the zeroth moment satisfies

G 0
wa~0,0!2G 0

wb~0,0!5
C

A~A2C!
. ~10!

This result is consistent with an exact statistical mechanical
sum rule that identifies the right-hand side ast2as with
as50 @16#. Quite generally the correlation functions are re-
lated to response functions. In particular,
x11[]m1/]H15G 0~0,0!, while x15*dzG 0~0,z!.

Beyond the MF it is difficult to calculateG (zm ,zn ;Q) but
it is straightforward to calculate the structure factorsSmn(Q),
which should shed light on the position dependence of criti-
cal singularities. First we note that at the MF level the struc-
ture factors obey the scaling expression

Smn~Q,r ,j i!5b2Smn~Qb,rb2,j i /b!, ~11!

wherer5U9( l 1) andb is an arbitrary spatial rescaling fac-
tor. This forms the basis of the RG analysis that allows cal-
culation of the structure factors~and thermodynamic proper-
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ties! beyond MF theory. This has been described in detail
elsewhere@9# and incorporates an exact treatment of the
Gaussian term~4! with a linear treatment of the relative po-
tentialW(2)( l 22 l 1). Note that a fully linear RG approxima-
tion cannot handle the decoupling of fluctuations, and it is
essential to allow for nonlinear effects related to the fluctua-
tions of the lower surfacel 1~y!. The results of the calculation
are described below. In zero bulk field the structure factor at
the depinning interface diverges with a nonuniversal critical
exponent

S22~0!;t22n i~v!, h̄50, ~12!

which is the same as the BHL result forji
2 . In contrast, the

wall structure factorsS11~0! andS12~0! diverge much more
slowly

S11~0!5S12~0!;t22, h̄50, ~13!

which would follow from a simple MF analysis. We have
similarly calculated the singularities along the critical iso-
therm t50, h̄→01 and find divergences consistent withdif-
ferentgap exponents at the wall and interface

D2252n i~v!, D115D1252 ~14!

in an obvious notation. This clearly corresponds to a viola-
tion of simple scaling theory and implies that local observ-
ables at the wall may be characterized by MF singularities, in
contrast to observables near the depinning interface that ex-
hibit dramatic nonuniversal critical behavior familiar from
the BHL theory. Importantly, these conclusions remain
largely unaffected by the inclusion of position dependent
stiffness coefficients. As mentioned earlier, allowing for
these we find that the second-order wetting transition may
become by a very weakly first-order one~provided the value
of v is not too big! along the same lines as the Fisher-Jin
instability mechanism@5#. However, the structure factors
S11~0! and S12~0! still exhibit MF-like criticality until t is
very close to the~renormalized! wetting temperature. Ironi-
cally the answer to the question originally posed by BLK,
‘‘ Is MF theory valid?’’ is both yesand no and depends on
where and what observations are made. The anomaly is re-
flected in thermodynamic properties that may show mixed
behavior. For example, it is straightforward to calculate the
singular part of the free energyFsing in the model that ig-

nores position dependence of the stiffness matrix elements.
This is conveniently written as a correction term to the BHL
result.

Fsing~t,h̄!5Fsing
BHL~t,h̄!1hL~ht2D11!, ~15!

whereL(x) is a simple scaling function. Recall that the BHL
term is consistent with hyperscaling 22as52ni and is char-
acterized by a gap exponentD52ni as well as logarithmic
terms. It is likely that most thermodynamic and response
functions show such mixed behavior and that the simple
separation of nonuniversal and MF-like singularities only oc-
curs for the structure factorsSmn(Q) whenQ50. Returning
to the local susceptibilityx1 it follows from ~15! that the
leading-order singularity is still of the BHL type. However,
there exists a MF-like correction term that will be very dif-
ficult to eliminate in numerical studies unlessTW is known
precisely.

In conclusion, we believe that it is now possible to have a
theory of wetting based on the coupled Hamiltonian~2!, at
least qualitatively consistent with all the available data. Al-
though a large value ofni has not been seen directly, the
zero-field adsorption data in the BLK simulations aboveTW
are consistent with strong fluctuation effects. Similarly, a
value ofv;0.8 has already been extracted from reanalysis of
more recent simulation data@10# based on the decoupling of
fluctuations predicted by the surface-order-parameter inter-
face Hamiltonian. The calculation described here explains
how this observation can be married with measurements of a
MF-like criticality for local observables at the wall. Al-
though we have not been able to calculate the order-
parameter correlation function at the wall, the structure fac-
torsSmn ~which are an essential ingredient in the calculation
of these and local susceptibilities! clearly show a scaling
anomaly. At the very least, the calculation demonstrates that
the original predictions of nonuniversal critical singularities
are more sensitive to position than previously assumed. Ob-
viously, future simulation studies should concentrate on
measuring local susceptibilities near the unbinding interface
if they want to directly observe the renormalized critical ex-
ponentni~v!—although they should be mindful of the FS
effects that hinder observation of semi-infinite behavior in
the parallel plate geometry@6# of the BLK simulations.

The authors wish to acknowledge conversations with Pe-
ter S. Swain and support from the Engineering and Physical
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